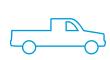


M360


OpenECU™ High Current Control Applications

Features

- Favorable architecture for ISO 26262
 ASIL-D applications
- High transient current characteristics on H-Bridges
- Open application-independent Simulink® development environment

Ideal for light, commercial and off-highway vehicles.

M360

OpenECU[™] High Current Control Applications

High Performance

- Powerful dual micro-processor architecture with inter-micro serial comms for program flow monitoring and 1x shared external CAN channel from both micros
- 2x H-bridges for high current outputs (10A continuous, 50A transient for 100ms)
- Comprehensive fault diagnosis supporting functional safety as well as OBD requirements
- High level diagnostics fault reporting resident in platform software
- Platform SW supports light-duty J1979/KWP2000/UDS 14229 and Heavy-duty J1939 service tool interfaces

Capable

- Designed for high current brushed-DC motor control applications
- Adopted in functional safety and high transient current applications such as Electronic Park Brake
- Supports common calibration tools such as ATI Vision, ETAS INCA, and Vector CANape via CCP
- Proven hardware for prototyping, pre-production and volume production

Capabilities				
Microprocessor		I/O Summary	I/O Summary	
Processor	MPC5746B	Sensor Supplies	None	
Clock Rate	160 MHz	Input Pins	3 analog inputs	
Code Space	2302KiB	Output Pins	4 (2x H-Bridges)	
RAM Space	384KiB	External Communication	1x CAN (for both micros have independent	
Calibration Space	128KiB		interface to the CAN bus)	
Secondary Processor	SPC560P34	Outputs		
Clock Rate	64MHz	H-Bridges	Continuous: 2x (10 A),	
Total Flash Space	192KiB		Transient: 2x (50 A) for 100 ms	
	Up to 64KiB additional	Current Monitors	2x current monitors per H-bridge for	
	for EEPROM emulation		circuit, rationality and unintended actuation	
Calibration Space	Up to 20KiB*		diagnostics - read by both micros	
Inputs		Voltage Monitors	2x voltage monitors (one on each arm) per	
Digital Inputs	None		H-Bridge for circuit and rationality	
Analog Inputs	3 (redundant-read by both micros)		diagnostics - read by both micros	
Applications		Physical		
Location	Chassis/Passenger Compartment	Dimensions	207mm x 104mm x 45mm (W x D x H)	
Supply Voltage	8V to 18V**	EMC	Designed for DIN/ISO 11452, ISO 7637-2	
Contact Dana for availability			and CISPR 25	
Designed for 12 V		Enclosure	Aluminum	
		Weight	0.54kg	
		Connectors	IEC 60068-2-64	
		Vibration	ISO 11452-2	
		Environmental Protection	IP69K & IPx8 Sealed/Gore vent	

The M360 is designed to support the most demanding high current control applications with a favorable functional safety architecture.

A primary and a secondary microprocessor provide redundancy architecture for use in safety critical applications. Development of application with M360, can use independent toolchains and build environment to establish independence with enhanced failure protection. Safety critical inputs can be read by both microprocessors and safety critical outputs can be controlled by both primary and secondary microprocessors. With these fundamental building blocks available, M360 has the capability to achieve ASIL-D.*

M360 has Dual H-bridges which can be used for high current applications such as DC Motors.

Some example application areas for M360

- Electronic Park Brake
- Electronic Park Booster
- HEV start-stop system
- HVAC

The M360 is based on the proven OpenECU™ hardware and software. It features developer-friendly Simulink application interface and C-API for rapid prototyping of tailored mobility applications.

*Contact Dana for more information on how this can be used in Functional Safety applications

Application Policy
Capacity ratings, features, and specifications vary depending upon the model and type of service. Application approvals must be obtained from Dana; contact your representative for application approval. We reserve the right to change or modifi our product specifications, configurations, or dimensions at any time without notice.

