

M560

OpenECU™ EV / HEV Supervisory Control

Versatile


- Designed to meet ISO 26262 ASIL D functional safety requirements
- 112 pins of flexible I/O
- Integrated charging interface circuitry
- Truly open application-independent Simulink® development environment

Ideal for light, commercial and off-highway vehicles.

M560

OpenECU™ EV / HEV Supervisory Control

High Performance

- Powerful NXP SPC5746 microprocessor and 4x CAN 2.0 channels
- Multiple H-bridges, low side drives and high side outputs
- Comprehensive fault diagnosis supporting functional safety as well as OBD requirements
- High level diagnostics fault reporting resident in platform software

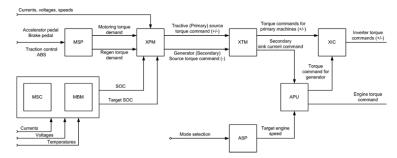
Capable

- Designed for complex hybrid and EV applications
- High-quality rugged hardware designed for engine compartment mount
- Supports common calibration tools such as ATI Vision, ETAS INCA, and Vector CANape via CCP as well as Dana calibration tool PiSnoop
- Same proven hardware used for development can be used for volume production
- ISO 15118

Capabilities				
Highlights		I/O Summary	I/O Summary	
Processor	SPC5746	Sensor Supplies	2x 5V @ 200mA	
Clock Rate	160 MHz	Input Pins	40	
Code Space	up to 3MB	Output Pins	50	
RAM Space	up to 256kB	External Communication	4 x CAN 2.0 to main micro,	
Calibration Space	up to 256kB		1x CAN to Secondary	
Secondary Processor	SPC560P34	Outputs		
Clock Rate	64MHz	H-Bridges	1x 10A, 2x 5A, 1x 3.2A	
Total Flash Space	192KiB	Low Current Low Side Drives	11x 100mA, 4x 400mA,	
Total RAM Space	up to 12kB		14x 700mA, 2x 1A	
Inputs		High Current Low Side Drives	4x 2.2A, 1x 3.2A	
Digital Inputs	9x switched, 3x PWM	High Side Logic Outputs	2x 1mA	
Analog Inputs	28	High Side Outputs	4x 700mA	
Internal Features		Physical	Physical	
Partial Networking		Dimensions	225x205x45mm (WxDxH)	
Wake on CAN (2 channels)		Material	Aluminum	
Wake on digital/PWM input		Weight	1.1kg	
Pilot and CC2 pins		Connectors	Molex 112pin (1x48, 2x32)	
Application		Vibration	ISO 16750 chassis mount	
Location	Chassis/Passenger Compartment	Environmental Protection	IP69K Sealed / Gore Vent	
Supply Voltage	6.5 - 18V			

The M560 OpenECU is designed to support the most demanding EV / HEV supervisory control applications. Since most supervisory controls demand the highest level of functional safety, the M560 was developed using ISO 26262 processes.

The high performance SPC5746 microprocessor supported by the powerful 32-bit SPC560P34 secondary microprocessor provides for sophisticated, high-bandwidth rationality checking and system safety monitoring of full-authority vehicle control applications.


The M560 is designed to support EV / HEV supervisory control applications worldwide, the integrated charging circuitry eliminates the need for a separate charger interface module (Charging interface control application software not included.)

Due to its high quantity of customizable I/O, advanced microprocessor, safety oriented architecture and user friendly OpenECU™ Simulink application interface, the M560 is a great rapid prototyping platform for a broad range of applications.

Dana also offers a full set of model based strategies suitable to support most EV / HEV / NEV architectures allowing it to be taken all the way into production. Dana's systems, controls and software engineers are available to support application implementations from prototype to production.

All 4 major charging interfaces supported CCS Type 1 (SAE J1772)USA CCS Type 2 (IEC 61851-1)EURO GB/T AC & DC (18487.1_2015 and 20234_2015)China CHAdeMO – JEVS G105-1993Japan

Strategy Control Structure

OpenECU.com

apacity ratings, features, and specifications vary depending pon the model and type of service. Application approvals rust be obtained from Dana; contact your representative for pplication approval. We reserve the right to change or modify ur product specifications, configurations, or dimensions at ny time without notice.

